题目内容
已知定义域为(-∞,0)∪(0,+∞)的函数y=f(x)满足条件:对于定义域内任意x1,x2都有f(x1x2)=f(x1)+f(x2).
(1)求证:f(
)=-f(x),且f(x)是偶函数;
(2)请写出一个满足上述条件的函数.
(1)求证:f(
| 1 | x |
(2)请写出一个满足上述条件的函数.
分析:(1)根据抽象函数“凑”的原则,结合f(x1•x2)=f(x1)+f(x2),分别令x1=x2=1,x1=-1,x2=1,
即可求得f(1)、f(-1)的值,进而求得结果;根据f(x1•x2)=f(x1)+f(x2),令x1=-1,易判断出f(-x2)与f(x2)的关系,再根据函数奇偶性的定义,即可得到答案.
(2)根据(x1x2)=f(x1)+f(x2)和已经学过的知识可知对数函数满足条件,另由函数的定义域为(-∞,0)∪(0,+∞),举出一个函数即可.
即可求得f(1)、f(-1)的值,进而求得结果;根据f(x1•x2)=f(x1)+f(x2),令x1=-1,易判断出f(-x2)与f(x2)的关系,再根据函数奇偶性的定义,即可得到答案.
(2)根据(x1x2)=f(x1)+f(x2)和已经学过的知识可知对数函数满足条件,另由函数的定义域为(-∞,0)∪(0,+∞),举出一个函数即可.
解答:解:(1)证明:令x1=x2=1
∵f(x1•x2)=f(x1)+f(x2)
∴f(1)=2f(1)
∴f(1)=0,
∴f(
)+f(x)=f(1)=0,
∴f(
)=-f(x)
令x1=-1,x2=1
f(-1)=f(-1)+f(-1)=2f(-1),
∴f(-1)=0;
令x1=-1
∵f(x1•x2)=f(x1)+f(x2)
∴f(x1•x2)=f(-x2)=f(-1)+f(x2)
又∵f(-1)=0
∴f(-x2)=f(x2)
故f(x)是偶函数;
(2)根据根据(x1x2)=f(x1)+f(x2)以及函数的定义域为(-∞,0)∪(0,+∞),
可知f(x)=log2|x|.
∵f(x1•x2)=f(x1)+f(x2)
∴f(1)=2f(1)
∴f(1)=0,
∴f(
| 1 |
| x |
∴f(
| 1 |
| x |
令x1=-1,x2=1
f(-1)=f(-1)+f(-1)=2f(-1),
∴f(-1)=0;
令x1=-1
∵f(x1•x2)=f(x1)+f(x2)
∴f(x1•x2)=f(-x2)=f(-1)+f(x2)
又∵f(-1)=0
∴f(-x2)=f(x2)
故f(x)是偶函数;
(2)根据根据(x1x2)=f(x1)+f(x2)以及函数的定义域为(-∞,0)∪(0,+∞),
可知f(x)=log2|x|.
点评:本题考查的知识点是函数奇偶性的判断,函数单调性的判断与证明及抽象函数值,其中熟练掌握函数性质的定义及判断方法是解答本题的关键,属中档题.
练习册系列答案
相关题目
已知定义域为R的奇函数f(x).当x>0时,f(x)=x-3,则不等式xf(x)>0的解集为( )
| A、(-∞,-3)∪(3,+∞) | B、(-3,3) | C、(-∞,0]∪(3,+∞) | D、(3,+∞) |