题目内容
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn
(2)令bn=
| 1 | ||
|
| lim |
| n→∞ |
分析:(1)由a3=7,a6=13,知d=2,由此能求出an,从而得到Sn.
(2)由bn=
=
(
-
),知Tn=
(1+
-
-
),由此能够求出
Tn.
(2)由bn=
| 1 |
| 4(n+2)n |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| lim |
| n→∞ |
解答:解:(1)∵a3=7,a6=13∴d=2
∴an=a3+(n-3)×2=2n+1(4分)
∴Sn=
=n(n+2)(6分)
(2)bn=
=
(
-
)
∴Tn=
(1+
-
-
)(10分)
∴
Tn=
(12分)
∴an=a3+(n-3)×2=2n+1(4分)
∴Sn=
| n(3+2n+1) |
| 2 |
(2)bn=
| 1 |
| 4(n+2)n |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴
| lim |
| n→∞ |
| 3 |
| 16 |
点评:本题考查数列的极限和求法,解题时要注意数列的通项公式和前n项和的求法.
练习册系列答案
相关题目