题目内容
已知函数f(x)=(1+
)sin2x+msin(x+
)sin(x-
)
(1)当m=0时,求f(x)在区间[
,
]上的取值范围;
(2)当tana=2时,f(a)=
,求m的值.
| 1 |
| tanx |
| π |
| 4 |
| π |
| 4 |
(1)当m=0时,求f(x)在区间[
| π |
| 8 |
| 3π |
| 4 |
(2)当tana=2时,f(a)=
| 3 |
| 5 |
(1)当m=0时,函数f(x)=(1+
)sin2x=
•sin2x=sin2x+sinxcosx=
+
sin2x=
+
sin(2x-
).
∵
≤x≤
,∴0≤2x-
≤
,∴-
≤sin(2x-
)≤1,0≤f(x)≤
,
故f(x)在区间[
,
]上的取值范围为[0
,].
(2)∵当tana=2时,f(a)=
,∴sin2a=
,cos2a=
.
再由f(a)=(1+
)sin2a+msin(a+
)sin(a-
)=
sin2a+m(
sin2a-
cos2a )=
,
可得
=
,解得m=-2.
| 1 |
| tanx |
| sinx+cosx |
| sinx |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
∵
| π |
| 8 |
| 3π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
| ||
| 2 |
| π |
| 4 |
1+
| ||
| 2 |
故f(x)在区间[
| π |
| 8 |
| 3π |
| 4 |
1+
| ||
| 2 |
(2)∵当tana=2时,f(a)=
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
再由f(a)=(1+
| 1 |
| tana |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 12+3m |
| 10 |
可得
| 12+3m |
| 10 |
| 3 |
| 5 |
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|