题目内容
6、有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是( )
分析:在坐标系中画出五个点,结果除去(3,10)之外,其余的点都在一条线附近,去掉这个点以后剩下的数据更具有相关关系
解答:解:∵(1,2),(2,4),(4,5),(3,10),(10,12),
在坐标系中画出五个点,结果除去(3,10)之外,其余的点都在一条线附近,
∴去掉这个点以后剩下的数据更具有相关关系,
故选C.
在坐标系中画出五个点,结果除去(3,10)之外,其余的点都在一条线附近,
∴去掉这个点以后剩下的数据更具有相关关系,
故选C.
点评:本题考查回归分析,本题解题的关键是在一个图形中看出不在一个带状结构附近的点,去掉以后就有较强的线性关系.
练习册系列答案
相关题目
甲乙两个学校高三年级分别有1100人和1000人,为了了解这两个学校全体高三年级学生在该地区二模考试中的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统汁表,规定考试成绩在[120,150]内为优秀.
甲校:
乙校:
(I)试求x,y的值;
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
.
甲校:
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 2 | 3 | 10 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 15 | x | 3 | 1 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 9 | 8 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 10 | 10 | y | 3 |
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
甲乙两个学校高三年级分别有1100人和1000人,为了了解这两个学校全体高三年级学生在该地区二模考试中的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统汁表,规定考试成绩在[120,150]内为优秀.
甲校:
乙校:
(I)试求x,y的值;
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
.
甲校:
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 2 | 3 | 10 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 15 | x | 3 | 1 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 9 | 8 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 10 | 10 | y | 3 |
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |