题目内容

已知函数f(x)=
ax+b
x2+1
在点(-1,f(-1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立;
(Ⅲ)已知0<a<b,求证:
lnb-lna
b-a
2a
a2+b2
分析:(I)将切点横坐标代入切线方程,求出切点,得到关于a,b的等式,求出f(x)的导数,将x=-1代入导函数,令得到的值等于切线的斜率-1.
(II)将要证的不等式变形,构造新函数h(x),求出其导函数,判断出其符号,判断出h(x)的单调性,求出h(x)的最小值,得到要证的不等式.
(III)将要证的不等式变形,转化为关于
b
a
的不等式,利用(II)得到的函数的单调性,得到恒成立的不等式,变形即得到要证的不等式.
解答:解:(Ⅰ)将x=-1代入切线方程得y=-2
f(-1)=
b-a
1+1
=-2

化简得b-a=-4
f′(x)=
a(x2+1)-(ax+b)•2x
(1+x2)2

f′(-1)=
2a+2(b-a)
4
=
2b
4
=
b
2
=-1

解得:a=2,b=-2.
f(x)=
2x-2
x2+1

(Ⅱ)由已知得lnx≥
2x-2
x2+1
在[1,+∞)上恒成立
化简(x2+1)lnx≥2x-2
即x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立
设h(x)=x2lnx+lnx-2x+2,
h′(x)=2xlnx+x+
1
x
-2

∵x≥1
2xlnx≥0,x+
1
x
≥2

即h'(x)≥0
∴h(x)在[1,+∞)上单调递增,h(x)≥h(1)=0
∴g(x)≥f(x)在x∈[1,+∞)上恒成立                      
(Ⅲ)∵0<a<b
b
a
>1

由(Ⅱ)知有ln
b
a
2
b
a
-2
(
b
a
)
2
+1

整理得
lnb-lna
b-a
2a
a2+b2

∴当0<a<b时,
lnb-lna
b-a
2a
a2+b2
点评:本题考查导数在最大值与最小值问题中的应用,解题的关键是利用导数研究出函数的单调性,判断出函数的最值,本题第二小题是证明不等式恒成立,通过构造函数转化为不等式恒成立,恒成立的问题一般转化最值问题来求解,本题即转化为用单调性求函数在闭区间上的最值的问题,求出最值再判断出参数的取值.本题运算量过大,解题时要认真严谨,避免变形运算失误,导致解题失败.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网