题目内容

(本小题满分13分)

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

(本小题满分13分)

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为为不同的两点,所以

于是存在直线满足条件,其方程为.………………………………13分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网