题目内容

Y已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.

解法一:由p:|1﹣|≤2,解得﹣2≤x≤10,
∴“非p”:A={x|x>10或x<﹣2}
由q:x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)

∴“非q”:B={x|x>1+m或x<1﹣m,m>0
由“非p”是“非q”的必要而不充分条件可知:BA.解得m≥9.
∴满足条件的m的取值范围为{m|m≥9}.
解法二:由“非p”是“非q”的必要而不充分条件.
即“非q”“非p”,但“非p”“非q”,
可以等价转换为它的逆否命题:“pq,但qp”.
即p是q的充分而不必要条件.由|1﹣|≤2,解得﹣2≤x≤10,
∴p={x|﹣2≤x≤10}由x2﹣2x+1﹣m2>0,

解得1﹣m≤x≤1+m(m>0)∴q={x|1﹣m≤x≤1+m,m>0}
由p是q的充分而不必要条件可知:pq解得m≥9.
∴满足条件的m的取值范围为{m|m≥9}.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网