题目内容
已知正项数列{an}中a1=1,前n项和Sn满足2Sn=anan+1;数列{bn}是首项和公比都等于2的等比数列.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和
(3)记f(n)=
sin
,Tn=
+
+…+
,求证:
≤Tn≤
(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和
(3)记f(n)=
| 2 |
| (2n-1)π |
| 4 |
| f(1) |
| a1b1 |
| f(2) |
| a2b2 |
| f(n) |
| anbn |
| 1 |
| 2 |
| 5 |
| 8 |
分析:(1)通过2Sn=anan+1;推出数列的递推关系式,推出数列是等差数列,然后求数列{an}的通项公式;
(2)通过数列{bn}是首项和公比都等于2的等比数列,求出bn,利用错位相减法求解数列{anbn}的前n项和.
(3)通过f(n)=
sin
,化简Tn=
+
+…+
的表达式,求出T1,T2,当n≥3时转化Tn≥
+
-(
+
+…+
),与Tn≤
-
+(
+…+
),然后证明
≤Tn≤
(n∈N*).
(2)通过数列{bn}是首项和公比都等于2的等比数列,求出bn,利用错位相减法求解数列{anbn}的前n项和.
(3)通过f(n)=
| 2 |
| (2n-1)π |
| 4 |
| f(1) |
| a1b1 |
| f(2) |
| a2b2 |
| f(n) |
| anbn |
| 1 |
| 2 |
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| 1 |
| anbn |
| 5 |
| 8 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| 1 |
| anbn |
| 1 |
| 2 |
| 5 |
| 8 |
解答:解:(1)因为2Sn=anan+1;所以n=1时2S1=a1•a2,a1=1,所以a2=2,
∵2Sn=anan+1;∴2Sn+1=an+1an+2;
可得2an+1=an+1an+2-anan+1;
∵an>0∴an+2-an=2;
∵a1=1,a2=2,
∴数列{an}是等差数列,
an=n.
(2)数列{bn}是首项和公比都等于2的等比数列,所以bn=2n,数列{anbn}的前n项和
Sn=a1b1+a2b2+…+anbn=1×2+2×22+…+n×2n…①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1…②
所以②-①得
Sn=n×2n+1-(2+22+…+2n)=(n-1)2n+1+2.
(3)证明∵f(n)=
sin
,
Tn=
+
+…+
=
+
-
-
+…+
,
T1=
=
,T2=
+
=
+
=
,
当n≥3时Tn=
+
-
-
+…+
≥
+
-(
+
+…+
)
≥
+
-(
+
+…+
)
=
+
>
又Tn=
-
-
+…+
≤
-
+(
+…+
)
≤
-
+
(
+…+
)
=
-
<
综上
≤Tn≤
(n∈N*)
∵2Sn=anan+1;∴2Sn+1=an+1an+2;
可得2an+1=an+1an+2-anan+1;
∵an>0∴an+2-an=2;
∵a1=1,a2=2,
∴数列{an}是等差数列,
an=n.
(2)数列{bn}是首项和公比都等于2的等比数列,所以bn=2n,数列{anbn}的前n项和
Sn=a1b1+a2b2+…+anbn=1×2+2×22+…+n×2n…①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1…②
所以②-①得
Sn=n×2n+1-(2+22+…+2n)=(n-1)2n+1+2.
(3)证明∵f(n)=
| 2 |
| (2n-1)π |
| 4 |
Tn=
| f(1) |
| a1b1 |
| f(2) |
| a2b2 |
| f(n) |
| anbn |
=
| 1 |
| a1b1 |
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| f(n) |
| anbn |
T1=
| 1 |
| a 1b1 |
| 1 |
| 2 |
| 1 |
| a1b1 |
| 1 |
| a2b2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 5 |
| 8 |
当n≥3时Tn=
| 1 |
| 2 |
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| f(n) |
| anbn |
≥
| 1 |
| 2 |
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| 1 |
| anbn |
≥
| 1 |
| 2 |
| 1 |
| 2×22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
又Tn=
| 5 |
| 8 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| f(n) |
| anbn |
≤
| 5 |
| 8 |
| 1 |
| a3b3 |
| 1 |
| a4b4 |
| 1 |
| anbn |
≤
| 5 |
| 8 |
| 1 |
| 3×23 |
| 1 |
| 3 |
| 1 |
| 24 |
| 1 |
| 2n |
=
| 5 |
| 8 |
| 1 |
| 3×2n |
| 5 |
| 8 |
综上
| 1 |
| 2 |
| 5 |
| 8 |
点评:本题考查等差数列与等比数列综合应用,数列与不等式的综合应用,考查数列求和的方法,考查分析问题解决问题的能力.
练习册系列答案
相关题目