题目内容

如图,已知四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.

(1)解法一:连接AC,设AC与BD交于O点,连接EO.
∵底面ABCD是正方形,∴O为AC的中点,又E为PC的中点,
∴OE∥PA,
∵OE?平面BDE,PA?平面BDE,
∴PA∥平面BDE.
解法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),P(0,0,2),E(0,11),B(2,2,0).

是平面BDE的一个法向量,
则由,得,∴


又PA?平面BDE,∴PA∥平面BDE.
(2)由(1)知是平面BDE的一个法向量,
是平面DEC的一个法向量.
设二面角B-DE-C的平面角为θ,
由题意可知

分析:(1)法一:连接AC,设AC与BD交于O点,连接EO.由底面ABCD是正方形,知OE∥PA由此能够证明PA∥平面BDE.
法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则,设是平面BDE的一个法向量,由向量法能够证明PA∥平面BDE.
(2)由(1)知是平面BDE的一个法向量,又是平面DEC的一个法向量.由向量法能够求出二面角B-DE-C的余弦值.
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,是高考的重点题型.解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网