题目内容

,设{an}是正项数列,其前n项和Sn满足:4Sn=(an-1)(an+3),则数列{an}的通项公式an=______.
∵4Sn=(an-1)(an+3),
∴4sn-1=(an-1-1)(an-1+3),
两式相减得整理得:2an+2an-1=an2-an-12
∵{an}是正项数列,
∴an-an-1=2,
∵4Sn=(an-1)(an+3),
令n=1得a1=3,
∴an=2n+1,
故答案为:2n+1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网