题目内容

已知数列{an}的前n项和是Sn,满足Sn=2an-1.
(1)求数列的通项an及前n项和Sn
(2)若数列{bn}满足数学公式,求数列{bn}的前n项和Tn
(3)若对任意的x∈R,恒有Tn<x2-ax+2成立,求实数a的取值范围.

解:(1)当n=1时,S1=2a1-1,a1=1,
当n≥2时,Sn-1=2an-1-1
∴an=Sn-Sn-1=2an-2an-1
∴an=2an-1(3分)
∴数列{an}是首项为1,公比为2的等比数列.
∴an=2n-1(n∈N*


(2)
==

(3)由Tn<x2-ax+2恒成立,
恒成立,
恒成立,
必须且只须满足1≤x2-ax+2恒成立,
即x2-ax+1≥0在R上恒成立
∴△=(-a)2-4×1≤0,
解得-2≤a≤2.
分析:(1)、根据题中已知条件先求出数列{an}是首项为1,公比为2的等比数列,然后求出数列an的通项公式,根据等比数列前n项和的公式便可求出Sn的表达式;
(2)、将(1)中求得的Sn的表达式代入bn的表达式中即可求得bn的通项公式,然后即可求出数列{bn}的前n项和Tn的表达式;
(3)、将(2)中求得的Tn的表达式代入Tn<x2-ax+2,进一步推理即可得出x2-ax+1≥0在R上恒成立,即可求出a的取值范围.
点评:本题主要考查了等比数列的基本性质以及数列与不等式的综合,考查了学生的计算能力和对数列与不等式的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网