ÌâÄ¿ÄÚÈÝ
¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡ÊD£¬ÈôͬʱÂú×ãÒÔÏÂÌõ¼þ£º
¢Ùº¯Êýf£¨x£©ÊÇDÉϵĵ¥µ÷º¯Êý£»
¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò³Æº¯Êýf£¨x£©ÊDZպ¯Êý£®
£¨1£©ÅжϺ¯Êýf(x)=2x+
£¬x¡Ê[1£¬10]£»g£¨x£©=-x3£¬x¡ÊRÊDz»ÊDZպ¯Êý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf(x)=
+k£¬x¡Ê[-2£¬+¡Þ£©ÊDZպ¯Êý£¬ÇóʵÊýkµÄȡֵ·¶Î§£®
¢Ùº¯Êýf£¨x£©ÊÇDÉϵĵ¥µ÷º¯Êý£»
¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò³Æº¯Êýf£¨x£©ÊDZպ¯Êý£®
£¨1£©ÅжϺ¯Êýf(x)=2x+
| 4 |
| x |
£¨2£©Èôº¯Êýf(x)=
| x+2 |
£¨1£©f¡ä(x)=2-
=
Áîf'£¨x£©=0
½âµÃx=
(x=-
Éᣩ
¡ßx¡Ê[1£¬
)ʱf'£¨x£©£¼0£»
x¡Ê(
£¬10]ʱf'£¨x£©£¾0
¡àf£¨x£©ÔÚ[1£¬
)ÉÏÊǼõº¯Êý£¬ÔÚ(
£¬10]ÉÏÊÇÔöº¯Êý
¡àº¯Êýf£¨x£©²»ÊÇ[1£¬10]Éϵĵ¥µ÷º¯Êý
¡àf(x)=2x+
²»ÊDZպ¯Êý£®
¢Ú¡ßg'£¨x£©=-x2¡Ü0¡àg£¨x£©=-x3ÔÚRÉÏÊǼõº¯Êý£¬
Éèg£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
£¬½âµÃ
¡à´æÔÚÇø¼ä[-1£¬1]⊆R£¬
ʹf£¨x£©ÔÚ[-1£¬1]ÉϵÄÖµÓòÒ²ÊÇ[-1£¬1]
¡àº¯Êýg£¨x£©=-x3ÊDZպ¯Êý
£¨2£©º¯Êýf(x)=
+kÔÚ¶¨ÒåÓòÉÏÊÇÔöº¯Êý
É躯Êýf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
£¬
¹Êa£¬bÊÇ·½³Ìx=k+
µÄÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬
ÃüÌâµÈ¼ÛÓÚ
ÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬
µ±k¡Ü-2ʱ£¬
£¬
½âµÃk£¾-
£¬¡àk¡Ê(-
£¬-2]£®
µ±k£¾-2ʱ£¬
£¬Î޽⣮
¡àkµÄȡֵ·¶Î§ÊÇ(-
£¬-2]
| 4 |
| x2 |
| 2(x2-2) |
| x2 |
Áîf'£¨x£©=0
½âµÃx=
| 2 |
| 2 |
¡ßx¡Ê[1£¬
| 2 |
x¡Ê(
| 2 |
¡àf£¨x£©ÔÚ[1£¬
| 2 |
| 2 |
¡àº¯Êýf£¨x£©²»ÊÇ[1£¬10]Éϵĵ¥µ÷º¯Êý
¡àf(x)=2x+
| 4 |
| x |
¢Ú¡ßg'£¨x£©=-x2¡Ü0¡àg£¨x£©=-x3ÔÚRÉÏÊǼõº¯Êý£¬
Éèg£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
|
|
¡à´æÔÚÇø¼ä[-1£¬1]⊆R£¬
ʹf£¨x£©ÔÚ[-1£¬1]ÉϵÄÖµÓòÒ²ÊÇ[-1£¬1]
¡àº¯Êýg£¨x£©=-x3ÊDZպ¯Êý
£¨2£©º¯Êýf(x)=
| x+2 |
É躯Êýf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòÒ²ÊÇ[a£¬b]£¬
Ôò
|
¹Êa£¬bÊÇ·½³Ìx=k+
| x+2 |
ÃüÌâµÈ¼ÛÓÚ
|
µ±k¡Ü-2ʱ£¬
|
½âµÃk£¾-
| 9 |
| 4 |
| 9 |
| 4 |
µ±k£¾-2ʱ£¬
|
¡àkµÄȡֵ·¶Î§ÊÇ(-
| 9 |
| 4 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿