ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf(x)Ó뺯Êýy=(a£¾0)µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ.

(1)ÊÔÓú¬aµÄ´úÊýʽ±íʾº¯Êýf(x)µÄ½âÎöʽ£¬²¢Ö¸³öËüµÄ¶¨ÒåÓò£»

(2)ÊýÁÐ{an}ÖУ¬a1=1£¬µ±n¡Ý2ʱ£¬an£¾a1.ÊýÁÐ{bn}ÖУ¬b1=2£¬Sn=b1+b2+¡­+bn.µãPn(an,) (n=1,2, 3,¡­)ÔÚº¯Êýf(x)µÄͼÏóÉÏ£¬ÇóaµÄÖµ£»

(3)ÔÚ(2)µÄÌõ¼þÏ£¬¹ýµãPn×÷Çãб½ÇΪµÄÖ±Ïßln£¬ÔòlnÔÚ£ùÖáÉϵĽؾàΪ(bn+1)(n=1,2, 3,¡­)£¬ÇóÊýÁÐ{an}µÄͨÏʽ.

½â£º(1)ÓÉÌâ¿ÉÖª£ºf(x)Ó뺯Êýy=(a£¾0)»¥Îª·´º¯Êý£¬¡àf(x)=+1£¬(x¡Ý0).  

(2)¡ßµãPn(an,)(n=1,2,3,¡­)ÔÚº¯Êýf(x)µÄͼÏóÉÏ£¬

¡à+1(n=1,2,3,¡­)(*)

ÔÚÉÏʽÖÐÁîn=1¿ÉµÃ£ºS1=+1£¬ÓÖ¡ßa1=1,S1=b1=2£¬´úÈë¿É½âµÃ£ºa=1.¡àf(x)=x2+1£¬(*)ʽ¿É»¯Îª£º=an2+1(n=1,2,3,¡­).                                                

(3)Ö±ÏßlnµÄ·½³ÌΪ£ºy=x-an£¬(n=1,2,3,¡­)£¬¢Ù

ÔÚÆäÖÐÁîx=0£¬µÃy=-an£¬ÓÖ¡ßlnÔÚ£ùÖáÉϵĽؾàΪ(bn+1)£¬¡à-an=(bn+1)£¬½áºÏ¢Ùʽ¿ÉµÃ£ºbn=3an2-3an+2.                                                          ¢Ú

ÓÉ¢Ù¿ÉÖª£ºµ±×ÔÈ»Êýn¡Ý2ʱ£¬Sn=nan2+n£¬Sn-1=(n-1)an-12+n-1£¬Á½Ê½×÷²îµÃ£ºbn=nan2-(n-1)an-12+1

½áºÏ¢ÚʽµÃ£º(n-3)an2+3an=(n-1)an-12+1(n¡Ý2,n¡ÊN*).¢Û

ÔÚ¢ÛÖУ¬Áîn=2£¬½áºÏa1=1£¬¿É½âµÃ£ºa2=1»ò2.

ÓÖ¡ßµ±n¡Ý2ʱ£¬an£¾a1£¬¡àÉáÈ¥a2=1£¬µÃa2=2.

ͬÉÏ£¬ÔÚ¢ÛÖУ¬ÒÀ´ÎÁîn=3,n=4£¬¿É½âµÃ£ºa3=3,a4=4.

²ÂÏ룺an=n(n¡ÊN*).ÏÂÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º

(¢¡)n=1,2,3ʱ£¬ÓÉÒÑÖªÌõ¼þ¼°ÉÏÊöÇó½â¹ý³ÌÖªÏÔÈ»³ÉÁ¢.

(¢¢)¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬¼´ak=k(k¡ÊN,ÇÒk¡Ý3)£¬ÔòÓÉ¢Ûʽ¿ÉµÃ£º

(k-2)ak+12+3ak+1=kak2+1£¬°Ñak=k´úÈëÉÏʽ²¢½â·½³ÌµÃ£ºak+1=»òk+1,

ÓÉÓÚk¡Ý3,¡à£¼0£¬¡àak+1=.

²»·ûºÏÌâÒ⣬ӦÉáÈ¥£¬¹ÊÖ»ÓÐak+1=k+1.

ËùÒÔ£¬n=k+1ʱÃüÌâÒ²³ÉÁ¢.

×ÛÉÏ¿ÉÖª£ºÊýÁÐ{an}µÄͨÏʽΪan=n(n¡ÊN*).

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø