ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)Ó뺯Êýy=(1)ÊÔÓú¬aµÄ´úÊýʽ±íʾº¯Êýf(x)µÄ½âÎöʽ£¬²¢Ö¸³öËüµÄ¶¨ÒåÓò£»
(2)ÊýÁÐ{an}ÖУ¬a1=1£¬µ±n¡Ý2ʱ£¬an£¾a1.ÊýÁÐ{bn}ÖУ¬b1=2£¬Sn=b1+b2+¡+bn.µãPn(an,
) (n=1,2, 3,¡)ÔÚº¯Êýf(x)µÄͼÏóÉÏ£¬ÇóaµÄÖµ£»
(3)ÔÚ(2)µÄÌõ¼þÏ£¬¹ýµãPn×÷Çãб½ÇΪ
µÄÖ±Ïßln£¬ÔòlnÔÚ£ùÖáÉϵĽؾàΪ
(bn+1)(n=1,2, 3,¡)£¬ÇóÊýÁÐ{an}µÄͨÏʽ.
½â£º(1)ÓÉÌâ¿ÉÖª£ºf(x)Ó뺯Êýy=
(a£¾0)»¥Îª·´º¯Êý£¬¡àf(x)=
+1£¬(x¡Ý0).
(2)¡ßµãPn(an,
)(n=1,2,3,¡)ÔÚº¯Êýf(x)µÄͼÏóÉÏ£¬
¡à
+1(n=1,2,3,¡)(*)
ÔÚÉÏʽÖÐÁîn=1¿ÉµÃ£ºS1=
+1£¬ÓÖ¡ßa1=1,S1=b1=2£¬´úÈë¿É½âµÃ£ºa=1.¡àf(x)=x2+1£¬(*)ʽ¿É»¯Îª£º
=an2+1(n=1,2,3,¡).
(3)Ö±ÏßlnµÄ·½³ÌΪ£ºy
=x-an£¬(n=1,2,3,¡)£¬¢Ù
ÔÚÆäÖÐÁîx=0£¬µÃy=
-an£¬ÓÖ¡ßlnÔÚ£ùÖáÉϵĽؾàΪ
(bn+1)£¬¡à
-an=
(bn+1)£¬½áºÏ¢Ùʽ¿ÉµÃ£ºbn=3an2-3an+2. ¢Ú
ÓÉ¢Ù¿ÉÖª£ºµ±×ÔÈ»Êýn¡Ý2ʱ£¬Sn=nan2+n£¬Sn-1=(n-1)an-12+n-1£¬Á½Ê½×÷²îµÃ£ºbn=nan2-(n-1)an-12+1
½áºÏ¢ÚʽµÃ£º(n-3)an2+3an=(n-1)an-12+1(n¡Ý2,n¡ÊN*).¢Û
ÔÚ¢ÛÖУ¬Áîn=2£¬½áºÏa1=1£¬¿É½âµÃ£ºa2=1»ò2.
ÓÖ¡ßµ±n¡Ý2ʱ£¬an£¾a1£¬¡àÉáÈ¥a2=1£¬µÃa2=2.
ͬÉÏ£¬ÔÚ¢ÛÖУ¬ÒÀ´ÎÁîn=3,n=4£¬¿É½âµÃ£ºa3=3,a4=4.
²ÂÏ룺an=n(n¡ÊN*).ÏÂÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
(¢¡)n=1,2,3ʱ£¬ÓÉÒÑÖªÌõ¼þ¼°ÉÏÊöÇó½â¹ý³ÌÖªÏÔÈ»³ÉÁ¢.
(¢¢)¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬¼´ak=k(k¡ÊN,ÇÒk¡Ý3)£¬ÔòÓÉ¢Ûʽ¿ÉµÃ£º
(k-2)ak+12+3ak+1=kak2+1£¬°Ñak=k´úÈëÉÏʽ²¢½â·½³ÌµÃ£ºak+1=
»òk+1,
ÓÉÓÚk¡Ý3,¡à
£¼0£¬¡àak+1=
.
²»·ûºÏÌâÒ⣬ӦÉáÈ¥£¬¹ÊÖ»ÓÐak+1=k+1.
ËùÒÔ£¬n=k+1ʱÃüÌâÒ²³ÉÁ¢.
×ÛÉÏ¿ÉÖª£ºÊýÁÐ{an}µÄͨÏʽΪan=n(n¡ÊN*).