题目内容

已知数列{an}的前n项和为SnSn+an=2-(
1
2
)n
(n为正整数).
(1)求数列{an}的通项公式;
(2)若
cn
n+1
=
an
n+2
,Tn=c1+c2+…+cn,求Tn
(1)∵Sn+an=2-(
1
2
)
n
,∴n≥2时,Sn-1+an-1=2-(
1
2
)
n-1

两式相减可得2an-an-1=(
1
2
)n

2n+1an-2nan-1=1
∵n=1时,S1+a1=2-(
1
2
)
1
,∴a1=
3
4
,∴22a1=3
∴{2n+1an}是以3为首项,1为公差的等差数列,
∴2n+1an=n+2,∴an=
n+2
2n+1

(2)∵
cn
n+1
=
an
n+2
,∴cn=
n+1
n+2
an
=
n+1
n+2
×
n+2
2n+1
=
n+1
2n+1

∴Tn=c1+c2+…+cn=
2
22
+
3
23
+
4
24
+…+
n
2n
+
n+1
2n+1

2Tn=
2
2
+
3
22
+
4
23
+…+
n+1
2n

两式相减得Tn=
2
2
+
1
22
+
1
23
+…
1
2n
-
n+1
2n+1
=
1
2
+
1
2
+
1
22
+…+
1
2n
-
n+1
2n+1

=
1
2
+
1
2
(1-
1
2n
)
1-
1
2
-
n+1
2n+1

=
3
2
-
2+n
2n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网