题目内容
已知数列{an}的前n项和为Sn,Sn+an=2-(
)n(n为正整数).
(1)求数列{an}的通项公式;
(2)若
=
,Tn=c1+c2+…+cn,求Tn.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)若
| cn |
| n+1 |
| an |
| n+2 |
(1)∵Sn+an=2-(
)n,∴n≥2时,Sn-1+an-1=2-(
)n-1
两式相减可得2an-an-1=(
)n,
∴2n+1an-2nan-1=1还
∵n=1时,S1+a1=2-(
)1,∴a1=
,∴22a1=3
∴{2n+1an}是以3为首项,1为公差的等差数列,
∴2n+1an=n+2,∴an=
;
(2)∵
=
,∴cn=
an=
×
=
,
∴Tn=c1+c2+…+cn=
+
+
+…+
+
,
2Tn=
+
+
+…+
,
两式相减得Tn=
+
+
+…
-
=
+
+
+…+
-
=
+
-
=
-
.
| 1 |
| 2 |
| 1 |
| 2 |
两式相减可得2an-an-1=(
| 1 |
| 2 |
∴2n+1an-2nan-1=1还
∵n=1时,S1+a1=2-(
| 1 |
| 2 |
| 3 |
| 4 |
∴{2n+1an}是以3为首项,1为公差的等差数列,
∴2n+1an=n+2,∴an=
| n+2 |
| 2n+1 |
(2)∵
| cn |
| n+1 |
| an |
| n+2 |
| n+1 |
| n+2 |
| n+1 |
| n+2 |
| n+2 |
| 2n+1 |
| n+1 |
| 2n+1 |
∴Tn=c1+c2+…+cn=
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n |
| 2n |
| n+1 |
| 2n+1 |
2Tn=
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
两式相减得Tn=
| 2 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+1 |
=
| 3 |
| 2 |
| 2+n |
| 2n+1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |