题目内容
已知数列{an}的前n和为Sn,且Sn+| 1 |
| 2 |
(1)求a1;
(2)求数列{an}的通项公式;
(3)设bn=
| 1 |
| 2 |
分析:(1)对n取特值1即可获得解答;
(2)根据条件Sn+
an=1写出相邻想满足的关系式,作差法即可获得数列{an}的性质,结合(1)即可获得解答;
(3)根据(2)可以先将数列{bn}的通项公式具体化,结合通项公式的特点采用成公比错位相减法即可获得问题解答.
(2)根据条件Sn+
| 1 |
| 2 |
(3)根据(2)可以先将数列{bn}的通项公式具体化,结合通项公式的特点采用成公比错位相减法即可获得问题解答.
解答:解:(1)∵sn+
an=1,∴s1+
a1=1,∴a1=
.
(2)当n≥2时,sn=-
an+1,sn-1=-
an-1+1,
∴an=sn-sn-1=-
an+1+
an-1-1,
∴an=
an-1,
又∵a1=
≠0,
∴
=
,
∴an=
•(
)n-1=
,
∴an=
,n∈N*
(3)∵bn=
(2n-1)an,an=
,n∈N*
∴bn=
,n∈N*,
∴Tn=1×
+3×
+5×
+…+(2n-3)×
+(2n-1)×
Tn=1×
+3×
+5×
+…+(2n-3)×
+(2n-1)×
∴
Tn=
+2(
+
+…+
)-(2n-1)•
=
-
,
∴Tn=1-
,n∈N*
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(2)当n≥2时,sn=-
| 1 |
| 2 |
| 1 |
| 2 |
∴an=sn-sn-1=-
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 3 |
又∵a1=
| 2 |
| 3 |
∴
| an |
| an-1 |
| 1 |
| 3 |
∴an=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
∴an=
| 2 |
| 3n |
(3)∵bn=
| 1 |
| 2 |
| 2 |
| 3n |
∴bn=
| 2n-1 |
| 3n |
∴Tn=1×
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴
| 2 |
| 3 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 2 |
| 3 |
| 2n+2 |
| 3n+1 |
∴Tn=1-
| n+1 |
| 3n |
点评:本题考查的是数列通项和数列求和问题.在解答时中充分体现了特值的思想、分类讨论的思想以及成公比错位相减的方法.值得同学体会和反思.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |