题目内容

若圆C:(x-h)2+(y-1)2=1在不等式x+y+1≥0所表示的平面区域内,则h的最小值为   
【答案】分析:要使圆C在不等式x+y+1≥0所表示的平面区域内,即圆C在直线x+y+1=0的上方,当直线x+y+1=0与圆C相切时,h最小,所以找出圆C的圆心坐标和半径,利用点到直线的距离公式表示出圆心C到直线x+y+1=0的距离d,让d等于圆C的半径列出关于h的方程,求出方程的解即可得到h的值即为最小值.
解答:解:由圆的方程(x-h)2+(y-1)2=1,得到圆心C的坐标为(h,1),半径r=1,
当直线x+y+1=0与圆C相切且圆在直线的上方时,圆心C到直线x+y+1=0的距离d==r=1,
解得:h=-2或h=--2(不合题意,舍去),
则h的最小值为:-2.
故答案为:-2
点评:此题考查学生掌握直线与圆相切时满足的条件,灵活运用点到直线的距离公式化简求值,是一道基础题.学生在求出h的两个值后,根据圆要在直线的上方应舍去不合题意的解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网