题目内容
椭圆
+
=1(a>b>0)与直线x+y-1=0相交于两点P,Q,以PQ为直径的圆过原点O,则
+
=
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| a2 |
| 1 |
| b2 |
2
2
.分析:设P(x1,y1),Q(x2,y2),把x+y-1=0代入
+
=1,再利用韦达定理得x1+x2=
,x1x2=
,y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2,由以PQ为直径的圆过原点O,知x1x2+y1y2=0,由此能够求出
+
.
| x2 |
| a2 |
| y2 |
| b2 |
| 2a2 |
| a2+b2 |
| a2(1-b2 ) |
| a2+b2 |
| 1 |
| a2 |
| 1 |
| b2 |
解答:解:设P(x1,y1),Q(x2,y2),
∵椭圆
+
=1(a>b>0)与直线x+y-1=0相交于两点P,Q,
∴x1+y1-1=0,x2+y2-1=0,
把x+y-1=0代入
+
=1,得:(a2+b2)x2-2a2x+a2(1-b2)=0,
∴x1+x2=
,x1x2=
,
∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2,
∵以PQ为直径的圆过原点O,∴OP垂直OQ,
∴
•
=-1,
∴x1x2+y1y2=0,
∴2x1x2-(x1+x2)+1=0,
∴2×
-
+1=0,
∴
+
=2.
故答案为:2.
∵椭圆
| x2 |
| a2 |
| y2 |
| b2 |
∴x1+y1-1=0,x2+y2-1=0,
把x+y-1=0代入
| x2 |
| a2 |
| y2 |
| b2 |
∴x1+x2=
| 2a2 |
| a2+b2 |
| a2(1-b2 ) |
| a2+b2 |
∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2,
∵以PQ为直径的圆过原点O,∴OP垂直OQ,
∴
| y1 |
| x1 |
| y2 |
| x2 |
∴x1x2+y1y2=0,
∴2x1x2-(x1+x2)+1=0,
∴2×
| a2(1-b2) |
| a2+b2 |
| 2a2 |
| a2+b2 |
∴
| 1 |
| a2 |
| 1 |
| b2 |
故答案为:2.
点评:本题考查直线与椭圆的位置关系的应用,解题时要认真审题,提高计算能力,注意圆的性质的灵活运用.
练习册系列答案
相关题目