题目内容
已知a=(2,cosx),b=(sin(x+(1)求函数f(x)的单调增区间;
(2)若f(x)=
,求cos(2x
)的值.
答案:f(x)=a·b=2sin(x+
)-2cosx
=2sinxcos
+2cosxsin
-2cosx
=
sinx-cosx=2sin(x
).
(1)由
+2kπ≤x
≤
+2kπ
得
+2kπ≤x≤
+2kπ
x∈[
+2kπ,
+2kπ],k∈Z时,f(x)是增函数.
(2)由(1)知f(z)=2sin(x
),f(x)=![]()
即sin(x
)=
,
∴cos(2x
)=1-2sin2(x
)=
.
练习册系列答案
相关题目