题目内容
已知数列{an}满足an=| n |
| n-1 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
(1)求数列{an}的通项公式;
(2)记bn=
| n-an |
| 3n-2an |
| 3n-4 |
| 9 |
| n |
| 3 |
分析:(1)根据题中已知条件和等比数列的基本性质便可求出an的通项公式;
(2)由(1)中求得的an的通项公式即可求出bn的通项公式,然后先证明bn<
,即可证明Tn<
,然后再证明Tn>
,即可证明:
<Tn<
.
(2)由(1)中求得的an的通项公式即可求出bn的通项公式,然后先证明bn<
| 1 |
| 3 |
| n |
| 3 |
| 3n-4 |
| 9 |
| 3n-4 |
| 9 |
| n |
| 3 |
解答:解:(1)由已知可得
=
-
(
)n(n≥2,n∈N*),即
-
=-
(
)n
由累加法可得:
=(
)n+1,即an=n(
)n+1
又n=1也成立,所以an=n(
)n+1(n∈N*);
(2)bn=
=
=
先证bn<
由bn<
?
<
?1-(
)n+1<1-
•(
)n+1?
•(
)n+1>0,此式显然成立,
∴Tn=b1+b2++bn<
(6分)
又bn=
>
[1-(
)n+1]
∴Tn=b1+b2++bn>
[n-(
)2-(
)3--(
)n+1]=
[n-
(1-(
)n]>
[n-
]=
.
∴
<Tn<
.
| an |
| n |
| an-1 |
| n-1 |
| 1 |
| 3 |
| 2 |
| 3 |
| an |
| n |
| an-1 |
| n-1 |
| 1 |
| 3 |
| 2 |
| 3 |
由累加法可得:
| an |
| n |
| 2 |
| 3 |
| 2 |
| 3 |
又n=1也成立,所以an=n(
| 2 |
| 3 |
(2)bn=
| n-an |
| 3n-2an |
1-
| ||
3-2
|
1-(
| ||
3-2(
|
先证bn<
| 1 |
| 3 |
由bn<
| 1 |
| 3 |
1-(
| ||
3-2(
|
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
∴Tn=b1+b2++bn<
| n |
| 3 |
又bn=
1-(
| ||
3-2(
|
| 1 |
| 3 |
| 2 |
| 3 |
∴Tn=b1+b2++bn>
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 3n-4 |
| 9 |
∴
| 3n-4 |
| 9 |
| n |
| 3 |
点评:本题主要考查了数列的递推公式以及数列与不等式的综合,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目