题目内容
若向量
,
满足|
|=|
|=1,
⊥
且(2
+3
)⊥(k
-4
),则实数k的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A.-6 | B.6 | C.3 | D.-3 |
∵向量
,
满足|
|=|
|=1,
⊥
,且(2
+3
)⊥(k
-4
),
可得
2=
2=1,
•
=0,且 (2
+3
)•(k
-4
)=0,
故有 2k
2+(3k-8)
•
-12
2=0,即 2k-12=0,
∴k=6,
故选B.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
可得
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
故有 2k
| a |
| a |
| b |
| b |
∴k=6,
故选B.
练习册系列答案
相关题目