题目内容

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=

(3)记(A、B、是(2)中的点),,求的值.

解 (1) 设动点为,                                1分

依据题意,有

,化简得.           4分

  因此,动点P所在曲线C的方程是:.                                        ……………………6分

由题意可知,当过点F的直线的斜率为0时,不合题意,

故可设直线,如图所示.                               8分

联立方程组,可化为

则点的坐标满足.                10分

,可得点

于是,

因此.                     12分

 (3)依据(2)可算出

则 

       

       

   

      

       .                             16分

所以,即为所求.                        18分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网