题目内容
【题目】在无穷数列
中,
,对于任意
,都有
,
,设
,记使得
成立的
的最大值为
.
(
)设数列
为
,
,
,
,
,写出
,
,
的值.
(
)若
为等差数列,求出所有可能的数列
.
(
)设
,
,求
的值.(用
,
,
表示)
【答案】(1)
,
,
;(2)
;(3)
.
【解析】
试题分析:(1)根据使得
成立的
的最大值为
,即可写出
,
,
的值;
(2)若
为等差数列,先判断
,再证明
,即可求出所有可能的数列
.
(Ⅲ)由
,
,利用
的定义能推导出
.
试题解析:
(
)∵
,则
,
,
则
,
,则
;
∴
,
,
.
(
)由题可得
,
可得
.
又∵使得
成立的
的最大值为
,
使得
成立的
的最大值为
,
∴
,
.
设
,则
.
若
,则
.
则当
时,
;
当
时,
,
∴
,
.
∵
为等差数列,
∴公差
,
∴
,
这与
矛盾,
∴
.
又∵
,
∴
,
由
为等差数列,得
.
∵使得
成立的
的最大值为
,
∴
,
又∵
,
∴
.
(
)
.
∵
,
∴
且
,
∴数列
中等于
的项共有
个,
即
个,
设
,
,
则
,且
,
∴数列
等于
的项有
个,即
个,
![]()
以此类推:数列
中等于
的项共有
个.
∴![]()
![]()
![]()
.
即:
.
【题目】2018 年1月16日,由新华网和中国财经领袖联盟联合主办的2017中国财经年度人物评选结果揭晓,某知名网站财经频道为了解公众对这些年度人物是否了解,利用网络平台进行了调查,并从参与调查者中随机选出
人,把这
人分为
两类(
类表示对这些年度人物比较了解,
类表示对这些年度人物不太了解),并制成如下表格:
年龄段 |
|
|
|
|
人数 |
|
|
|
|
|
|
|
|
|
(1)若按照年龄段进行分层抽样,从这
人中选出
人进行访谈,并从这
人中随机选出两名幸运者给予奖励.求其中一名幸运者的年龄在
岁~
岁之间,另一名幸运者的年龄在
岁~
岁之间的概率;(注:从
人中随机选出
人,共有
种不同选法)
(2)如果把年龄在
岁~
岁之间的人称为青少年,年龄在
岁~
岁之间的人称为中老年,则能否在犯错误的概率不超过
的前提下认为青少年与中老年人在对财经年度人物的了解程度上有差异?
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,其中![]()
【题目】某单位有车牌尾号为
的汽车
和尾号为
的汽车
,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日,
车日出车频率
,
车日出车频率
.该地区汽车限行规定如下:
车尾号 |
|
|
|
|
|
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且
,
两车出车相互独立.
(I)求该单位在星期一恰好出车一台的概率.
(II)设
表示该单位在星期一与星期二两天的出车台数之和,求
的分布列及其数学期望
.