题目内容
在空间直角坐标系O-xyz中,已知点A(1,0,2),B(0,2,1).点C,D分别在x轴,y轴上,且AD⊥BC,那么|
|的最小值是( )
| CD |
分析:设C(x,0,0),D(0,y,0),则
=(-1,y,-2),
=(x,-2,-1),由
•
=-x-2y+3=0,知x+2y=3.所以|
| =
=
,由此能求出其最小值.
| AD |
| BC |
| AD |
| BC |
| CD |
| x2+y2 |
| (3-2y)2+y2 |
解答:解:设C(x,0,0),D(0,y,0),
∵A(1,0,2),B(0,2,1),
∴
=(-1,y,-2),
=(x,-2,-1),
∵AD⊥BC,
∴
•
=-x-2y+2=0,
即x+2y=2.
∵
=(-x,y,0),
∴|
| =
=
=
=
≥
.
故选B.
∵A(1,0,2),B(0,2,1),
∴
| AD |
| BC |
∵AD⊥BC,
∴
| AD |
| BC |
即x+2y=2.
∵
| CD |
∴|
| CD |
| x2+y2 |
=
| (2-2y)2+y2 |
=
| 5y2-8y+4 |
=
5(y-
|
≥
2
| ||
| 5 |
故选B.
点评:本题考查空间两点间的距离公式的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目