题目内容
已知函数f(x)=an-1x2+(1-an)x+an-1,(x>0,n≥2)
(1)若f(1)=0,a1=1,求数列{an}的通项公式
(2)若an>1,(n∈N*),至少存在一个正数x,使f(x)≤0成立,
求证:
+
+
+…+
<1(n∈N*)
(1)若f(1)=0,a1=1,求数列{an}的通项公式
(2)若an>1,(n∈N*),至少存在一个正数x,使f(x)≤0成立,
求证:
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a3+1 |
| 1 |
| an+1 |
分析:(1)根据f(1)=0,a1=1,可得an=2an-1+1,变形得an+1=2(an-1+1),从而求出数列{an}的通项公式;
(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,从而只需△≥0即可,然后利用等比数列求和公式可得
+
+
+…+
<
+
+…+
=
=1-
<1,证得结论.
(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,从而只需△≥0即可,然后利用等比数列求和公式可得
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a3+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| ||||
1-
|
| 1 |
| 2n |
解答:解:(1)f(1)=an-1+1-an+an-1=0⇒an=2an-1+1⇒an+1=2(an-1+1)
∴an+1=2n⇒an=2n-1,(n∈N*)
证明:(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,∴只需△≥0即可△=(1-an)2-4
≥0⇒(an-1)2≥4
⇒an-1≥2an-1⇒
≥2
∴an+1=(a1+1)•
•
•…
≥(a1+1)•2n-1>2n
∴
+
+
+…+
<
+
+…+
=
=1-
<1
∴an+1=2n⇒an=2n-1,(n∈N*)
证明:(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,∴只需△≥0即可△=(1-an)2-4
| a | 2 n-1 |
| a | 2 n-1 |
| an+1 |
| an-1+1 |
∴an+1=(a1+1)•
| a2+1 |
| a1+1 |
| a3+1 |
| a2+1 |
| an+1 |
| an-1+1 |
∴
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a3+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| ||||
1-
|
| 1 |
| 2n |
点评:本题主要考查了构造法求数列的通项公式,同时考查了韦达定理的运用和等比数列的求和,是一道数列与不等式综合的题,有一定的难度.
练习册系列答案
相关题目