题目内容
已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)试判断m,n的大小并说明理由.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)试判断m,n的大小并说明理由.
(1)∵f(x)=(x2-3x+3)•ex,
∴f′(x)=(x2-x)ex(2分)
令f′(x)≥0,则x≥1或x≤0,
∴f(x)在(-∞,0],[1,+∞)上单调递增,在[0,1]上单调递减(5分)
∴-2<t≤0.(7分)
①若-2<t≤0,则f(x)在[-2,t]上单调递增,
∴f(t)>f(-2),
即n>m.(9分)
②若0<t≤1,则f(x)在[-2,0]上单调递增,在[0,t]上单调递减
又f(-2)=
,f(1)=e,
∴f(t)≥f(1)>f(-2),即n>m.(11分)
③若t>1,则f(x)在(_∞,0],[1,t]上单调递增,在[0,1]上单调递减
∴f(t)>f(1)>f(-2),即n>m.(13分)
综上,n>m.(15分)
∴f′(x)=(x2-x)ex(2分)
令f′(x)≥0,则x≥1或x≤0,
∴f(x)在(-∞,0],[1,+∞)上单调递增,在[0,1]上单调递减(5分)
∴-2<t≤0.(7分)
①若-2<t≤0,则f(x)在[-2,t]上单调递增,
∴f(t)>f(-2),
即n>m.(9分)
②若0<t≤1,则f(x)在[-2,0]上单调递增,在[0,t]上单调递减
又f(-2)=
| 13 |
| e2 |
∴f(t)≥f(1)>f(-2),即n>m.(11分)
③若t>1,则f(x)在(_∞,0],[1,t]上单调递增,在[0,1]上单调递减
∴f(t)>f(1)>f(-2),即n>m.(13分)
综上,n>m.(15分)
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|