题目内容
【题目】给出下列命题中
① 非零向量
满足
,则
的夹角为
;
② ![]()
>0是
的夹角为锐角的充要条件;
③若
则
必定是直角三角形;
④△ABC的外接圆的圆心为O,半径为1,若
,且
,则向量
在向量
方向上的投影为
.
以上命题正确的是 __________ (注:把你认为正确的命题的序号都填上)
【答案】①③④
【解析】对于① 由向量
满足
,由向量减法的三角形法则,知向量
,
,
组成一个等边三角形,向量
,
夹角为
,又由向量加法得平行四边形法则,以
,
为邻边的平行四边形为菱形,所以
的夹角为
,故① 正 确;
对于②,当
时,不成立;
对于③由![]()
则![]()
所以
,即
,所以
是直角三角形;
对于④由题目信息可作出如右图所示,三角形AOC为等边三角形,所以∠ACB=
,且BC为直径,所以∠ABC=![]()
在直角三角形ABC中BC=2,AC=1,所以AB=
,
则向量
在向量
方向上的投影
=
.
故④正确.
![]()
综上可知命题①③④正确.
练习册系列答案
相关题目