搜索
题目内容
16、如图,在三棱锥A-BCD中,DA=DC,AB=BC,求证DB⊥AC.
试题答案
相关练习册答案
分析:
由DE⊥AC,BE⊥AC可证AC⊥面BDE可证DB⊥AC
解答:
证明;设AC的中点为E,连接DE,BE,
在△ADC中,因为DA=DC,所以DE⊥AC,
同理BE⊥AC,
∴AC⊥面BDE
∴DB⊥AC
点评:
利用线面垂直,来证线线垂直,是立体几何证明中的常用方法.
练习册系列答案
走向中考考场系列答案
新编能力拓展练习系列答案
练案系列答案
金榜行动系列答案
学习质量监测系列答案
海淀单元测试AB卷系列答案
金阶梯课课练单元测系列答案
华东师大版一课一练系列答案
孟建平单元测试系列答案
金考卷活页题选系列答案
相关题目
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=
3
,BD=CD=1,另一个侧面是正三角形.
(1)求证:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.
如图,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,
BC=2
2
,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当点D运动到线段AB的中点时,求二面角D-CO-B的大小;
(Ⅲ)当CD与平面AOB所成角最大时,求三棱锥C-OBD的体积.
如图,在三棱锥A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,点E在BC上,且AE⊥AC.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求点B到平面ACD的距离.
如图,在三棱锥A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,
∠OAB=
π
6
,斜边AB=4,动点D在斜边AB上.
(1)求证:平面COD⊥平面AOB;
(2)当D为AB的中点时,求:异面直线AO与CD所成角大小.
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=
3
,BD=CD=1,另一个侧面是正三角形
(1)求证:AD⊥BC
(2)求二面角B-AC-D的大小.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案