题目内容

某初一年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[130,140)内的学生中选取的人数应为________.

10
分析:由已知中的频率分布直方图,根据各组矩形高之和×组距=1,结合已知中频率分布直方图的组距为10,我们易求出身高在[120,13),[130,140),[140,150]三组内学生的频率,根据分屋抽样中样本比例和总体比例一致的原则,我们易求出从身高在[130,140)内的学生中选取的人数.
解答:由已知中频率分布直方图的组距为10,
身高在[120,130),[130,140),[140,150]的矩形高为(0.1-0.005+0.035+0.020+0.010)=0.030,0.020,0.010
故身高在[120,130),[130,140),[140,150]的频率为0.30,0.20,0.10
故分层抽样的方法选取30人参加一项活动,
则从身高在[130,140)内的学生中选取的人数应为30×=10
故答案为:10
点评:本题考查的知识点是频率分布直方图,分层抽样,其中频率==组距×矩形的高,是解答此类问题的关键.另本题中分层抽样保持比例,也是本题的突破口之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网