题目内容

已知二次函数f(x)=ax2+bx+1的导函数 为f′(x),f′(0)>0,f(x)与x轴恰有一个交点,则数学公式的最小值为


  1. A.
    2
  2. B.
    数学公式
  3. C.
    3
  4. D.
    数学公式
A
分析:首先对f(x)求导,得出f′(x)=2ax+b,再利用f′(0)>0,可得出b>0;利用f(x)与x轴恰有一个交点,可得出△=0,得到a与b的关系式,即可用a表示b,从而得出的关于b表达式,再利用基本不等式即可求出其最小值.
解答:∵f(x)=ax2+bx+1,∴f′(x)=2ax+b,∴f(0)=b,又f′(0)>0,∴b>0.
又已知f(x)与x轴恰有一个交点,∴△=b2-4a=0,∴,∴f(1)=a+b+1=
===1+1=2.当且仅当,即b=2时取等号,
的最小值为2.
故选A.
点评:本题综合考查了二次函数、导数、基本不等式,熟练掌握它们的性质及使用方法是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网