题目内容
已知数列{an}的前n项和Sn满足:Sn=| a |
| a-1 |
(1)求{an}的通项公式;
(2)设bn=
| 2Sn |
| an |
(3)在条件(2)下,设cn=2-(
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 |
| 3 |
分析:(1)利用通项公式和前n项和公式关系式an=
,得到an与an-1的关系.
(2)把sn代入bn并化简,已知数列为等比数列,取一些具体简单项,再利用等比中项求出a的值.
(3)把前两小题的结果代入cn并化简,由式子的特点利用放缩法证明.即两项相减时前一项放小后一项放大,前后两项恰好消去,然后再放缩.
|
(2)把sn代入bn并化简,已知数列为等比数列,取一些具体简单项,再利用等比中项求出a的值.
(3)把前两小题的结果代入cn并化简,由式子的特点利用放缩法证明.即两项相减时前一项放小后一项放大,前后两项恰好消去,然后再放缩.
解答:解:(1)∵S1=
(a1-1)(a为常数,且a≠0,a≠1),
∴当n≥2时,an=Sn-Sn-1=
an-
an-1,
化简得
=a(a≠0),
又∵当n=1时,a1=s1=a,即{an}是等比数列.
∴数列的通项公式an=a•an-1=an
(2)由(1)知,bn=
+1=
,
因{bn}为等比数列,则有b22=b1b3
∵b1=3,b2=
,b3=
,
∴(
)2=3•
,
解得a=
,再将a=
代入得bn=3n成立,
∴a=
.
(3)证明:由(2)知an=(
)n,
∴cn=2-
-
=1-
+1-
=
-
,
∵
<
,
>
∴
-
<
-
,
∴cn<
-
∴数列的前n和Tn=c1+c2+…+cn
<(
-
) +(
-
) +…+(
-
)
=
-
<
| a |
| a-1 |
∴当n≥2时,an=Sn-Sn-1=
| a |
| a-1 |
| a |
| a-1 |
化简得
| an |
| an-1 |
又∵当n=1时,a1=s1=a,即{an}是等比数列.
∴数列的通项公式an=a•an-1=an
(2)由(1)知,bn=
2•
| ||
| an |
| (3a-1)an-2a |
| an(a-1) |
因{bn}为等比数列,则有b22=b1b3
∵b1=3,b2=
| 3a+2 |
| a |
| 3a2+2a+2 |
| a2 |
∴(
| 3a+2 |
| a |
| 3a2+2a+2 |
| a2 |
解得a=
| 1 |
| 3 |
| 1 |
| 3 |
∴a=
| 1 |
| 3 |
(3)证明:由(2)知an=(
| 1 |
| 3 |
∴cn=2-
| 1 | ||
1+(
|
| 1 | ||
1-(
|
| 3n |
| 3n+1 |
| 3n+1 |
| 3n+1-1 |
=
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
∵
| 1 |
| 3n+1 |
| 1 |
| 3n |
| 1 |
| 3n+1-1 |
| 1 |
| 3n+1 |
∴
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴cn<
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴数列的前n和Tn=c1+c2+…+cn
<(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n-1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
点评:本题考查的知识全面,涉及到通项公式和前n项和的关系及等比数列的定义,计算量也很大,最后证明用放缩法,需要认真观察式子的特点,恰到好处的放缩才能证明出来.做好本题需要强的计算能力和严密的逻辑思维能力.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |