题目内容
计算cos(35°+x)cos(25°-x)-cos(55°-x)sin(25°-x)=
.
| 1 |
| 2 |
| 1 |
| 2 |
分析:先利用诱导公式化简表达式,然后利用两角差的余弦函数化简表达式,即可求出表达式的值.
解答:解:cos(35°+x)cos(25°-x)-cos(55°-x)sin(25°-x)
=cos(35°+x)cos(25°-x)-sin(35°+x)sin(25°-x)
=cos(35°+x+25°-x)
=cos60°
=
.
故答案为:
.
=cos(35°+x)cos(25°-x)-sin(35°+x)sin(25°-x)
=cos(35°+x+25°-x)
=cos60°
=
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题是基础题,考查诱导公式的应用,两角差的余弦函数的应用,考查计算能力.
练习册系列答案
相关题目