题目内容
设n是正整数,集合M={1,2,…,2n}.求最小的正整数k,使得对于M的任何一个k元子集,其中必有4个互不相同的元素之和等于
解析:考虑M的n+2元子集P={n-l,n,n+1,…,2n}.
P中任何4个不同元素之和不小于(n-1)+n+(n+1)+(n+2)=4n+2,所以k≥n+3.
将M的元配为n对,Bi=(i,2n+1-i),1≤i≤n.
对M的任一n+3元子集A,必有三对
同属于A(i1、i 2、i 3两两不同).
又将M的元配为n-1对,C i (i,2n-i),1≤i≤n-1.
对M的任一n+3元子集A,必有一对
同属于A,
这一对
必与
中至少一个无公共元素,这4个元素互不相同,且和为2n+1+2n=4n+1,最小的正整数k=n+3
练习册系列答案
相关题目