题目内容

已知数列{an}的前n项和是Sn,a1=3,且an+1=2Sn+3,数列{bn}为等差数列,且公差d>0,b1+b2+b3=15.
(Ⅰ)求数列的通项公式;
(Ⅱ)若
a1
3
+b1
a2
3
+b2
a3
3
+b3
成等比数列,求数列{
1
bnbn+1
}
的前n项和Tn
(Ⅰ)由an+1=2Sn+3,an=2Sn-1+3(n≥2)
得:an+1-an=2an∴an+1=3an(n≥2)
an+1
an
=3(n≥2)
(2分)
a2=2a1+3=9,
a2
a1
=3
,(3分)
an+1
an
=3(n∈N*)

∴an=3n(4分)
(Ⅱ)由b1+b2+b3=15,得b2=5(5分)
则b1=5-d,b3=5+d,
a1
3
+b1=6-d,
a2
3
+b2=8,
a3
3
+b3=14+d

则有:64=(6-d)(14+d)即:d2+8d-20=0(6分)
d=2或d=-10∵d>0∴d=2(7分)
∴bn=b1+(n-1)d=3+2(n-1)=2n+1(8分)
Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
1
3×5
+
1
5×7
+…+
1
(2n+1)(2n+3)

=
1
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)=
1
2
(
1
3
-
1
2n+3
)=
n
6n+9
(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网