题目内容
已知函数
在
处取得极小值2.
(1)求函数
的解析式;
(2)求函数
的极值;
(3)设函数
,若对于任意
,总存在
,使得
,求实数
的取值范围.
(1)![]()
(2)当
时,函数
有极小值-2;当
时,函数
有极大值2
(3)![]()
解析试题分析:(1)∵函数
在
处取得极小值2,
∴
, ……1分
又
,
∴
由②式得m=0或n=1,但m=0显然不合题意,
∴
,代入①式得m=4
∴
……2分
经检验,当
时,函数
在
处取得极小值2, ……3分
∴函数
的解析式为
. ……4分
(2)∵函数
的定义域为
且由(1)有
,
令
,解得:
, ……5分
∴当x变化时,
的变化情况如下表: ……7分x ![]()
-1 ![]()
1 ![]()
![]()
— 0 + 0 — ![]()
小卷狂练系列答案
帮你学数学全讲归纳精练系列答案
品至教育一线课堂系列答案
新优化设计暑假作业系列答案
三点一测课堂作业本系列答案
天梯学案初中同步新课堂系列答案
高考核心假期作业寒假中国原子能出版传媒有限公司系列答案
暑假作业湖南使用湖北教育出版社系列答案
常青藤英语词汇专练系列答案
新鑫文化过好假期每一天暑假团结出版社系列答案