题目内容
设函数f(x)=2sin(2x+φ)(-
<φ<
),满足f(x)=f(
-x),则f(
)=
| π |
| 2 |
| π |
| 2 |
| 4π |
| 3 |
| 5π |
| 12 |
0
0
.分析:利用f(x)=f(
-x),结合-
<φ<
,求出φ的值,得到函数的解析式,然后求出f(
).
| 4π |
| 3 |
| π |
| 2 |
| π |
| 2 |
| 5π |
| 12 |
解答:解:由题意可知:f(x)=f(
-x),所以2sin(2x+φ)=2sin(-2x+φ+
),-
<φ<
令x=0可得
+2φ=π,
φ=
,所以f(x)=2sin(2x+
),f(
)=2sin(2×
+
)=0.
故答案为:0.
| 4π |
| 3 |
| 8π |
| 3 |
| π |
| 2 |
| π |
| 2 |
| 2π |
| 3 |
φ=
| π |
| 6 |
| π |
| 6 |
| 5π |
| 12 |
| 5π |
| 12 |
| π |
| 6 |
故答案为:0.
点评:本题通过已知条件求出函数的解析式,是解题的关键,注意条件的灵活运用,常考题型.
练习册系列答案
相关题目