题目内容
(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.
解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),
∴x2+y2+z2≥
,
当且仅当
=
=
,x+2y+3z=1,即x=
,y=
,z=
时取等号.
即x2+y2+z2的最小值为
.
解法二:设向量
=(1,2,3),
=(x,y,z),
∵|
?
|≤|
| |
|,∴1=x+2y+3z≤
,
∴x2+y2+z2≥
,当且仅当
与
共线时取等号,即
=
=
,x+2y+3z=1,解得x=
,y=
,z=
时取等号.
故答案为
.
∴x2+y2+z2≥
| 1 |
| 14 |
当且仅当
| x |
| 1 |
| y |
| 2 |
| z |
| 3 |
| 1 |
| 14 |
| 1 |
| 7 |
| 3 |
| 14 |
即x2+y2+z2的最小值为
| 1 |
| 14 |
解法二:设向量
| a |
| b |
∵|
| a |
| b |
| a |
| b |
| 12+22+32 |
| x2+y2+z2 |
∴x2+y2+z2≥
| 1 |
| 14 |
| a |
| b |
| x |
| 1 |
| y |
| 2 |
| z |
| 3 |
| 1 |
| 14 |
| 1 |
| 7 |
| 3 |
| 14 |
故答案为
| 1 |
| 14 |
练习册系列答案
相关题目