题目内容
用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为( )
| A.整数 | B.奇数或偶数 |
| C.正整数或负整数 | D.自然数或负整数 |
根据反证法的步骤,假设是对原命题结论的否定
“方程没有整数根”的否定“方程存在实数根x0为整数”.
即假设正确的是:方程存在实数根x0为整数.
故选A.
“方程没有整数根”的否定“方程存在实数根x0为整数”.
即假设正确的是:方程存在实数根x0为整数.
故选A.
练习册系列答案
相关题目