题目内容

等差数列{an}的前n项和为Sn,a3=20,S3=36,则
1
S1-1
+
1
S2-1
+
1
S3-1
+…+
1
S15-1
=
 
分析:由已知可求等差数列的首项a1及公差d,然后由等差数列的前n项和公式可求Sn,利用裂项求和进行求解.
解答:解:∵a3=a1+2d=20,S3=3a1+3d=36
∴d=8,a1=4
Sn=4n+
n(n-1)
2
×8=4n2

1
Sn-1
=
1
4n2- 1
=
1
(2n+1)(2n-1)
=
1
2
(
1
2n-1
-
1
2n+1
)

1
S1-1
+
1
S2-1
+
1
S3-1
+…+
1
S15-1

=
1
1×3
+
1
3×5
+…+
1
29×31

=
1
2
( 1-  
1
3
+
1
3
-
1
5
+…+
1
29
-
1
31
)
=
15
31

故答案为:
15
31
点评:本题主要考查了等差数列的通项公式及前n项和公式,数列求和的裂项法,注意在利用裂项时,
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,中的
1
2
是解题中容易漏掉的,考查学生的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网