题目内容
等差数列{an}的前n项和为Sn,a3=20,S3=36,则| 1 |
| S1-1 |
| 1 |
| S2-1 |
| 1 |
| S3-1 |
| 1 |
| S15-1 |
分析:由已知可求等差数列的首项a1及公差d,然后由等差数列的前n项和公式可求Sn,利用裂项求和进行求解.
解答:解:∵a3=a1+2d=20,S3=3a1+3d=36
∴d=8,a1=4
∴Sn=4n+
×8=4n2
而
=
=
=
(
-
)
则
+
+
+…+
=
+
+…+
=
( 1-
+
-
+…+
-
)=
故答案为:
∴d=8,a1=4
∴Sn=4n+
| n(n-1) |
| 2 |
而
| 1 |
| Sn-1 |
| 1 |
| 4n2- 1 |
| 1 |
| (2n+1)(2n-1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
则
| 1 |
| S1-1 |
| 1 |
| S2-1 |
| 1 |
| S3-1 |
| 1 |
| S15-1 |
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 29×31 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 29 |
| 1 |
| 31 |
| 15 |
| 31 |
故答案为:
| 15 |
| 31 |
点评:本题主要考查了等差数列的通项公式及前n项和公式,数列求和的裂项法,注意在利用裂项时,
=
(
-
),中的
是解题中容易漏掉的,考查学生的运算.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
练习册系列答案
相关题目
设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的( )
| A、充分而不必要条件 | B、必要而不充分条件 | C、充分必要条件 | D、既不充分也不必要条件 |