题目内容
数列{an}的前n项和Sn=n2+n,设数列{bn},bn=2an.(1)求数列{bn}的前n项和Tn;
(2)求Rn=a1b1+a2b2+…+anbn.
分析:(1)知Sn=n2+n,由an和Sn的关系求出an,分为n=1时,n≥2时,n=1时适合n≥2时的式子,所以数列{an}是等差数列,再求出bn,由等比数列的前n项和求出Tn;
(2)由(1)知,数列{an}是等差数列,数列{bn}是等比数列,用错位相减法求Rn,写出Rn的表达式,等式两边同乘以数列{bn}的公比4得到一个新的等式,两式左右两边分别相减,再用等比数列的前n项和可求Rn.
(2)由(1)知,数列{an}是等差数列,数列{bn}是等比数列,用错位相减法求Rn,写出Rn的表达式,等式两边同乘以数列{bn}的公比4得到一个新的等式,两式左右两边分别相减,再用等比数列的前n项和可求Rn.
解答:解:(1)∵n=1时,a1=S1=2,
n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
∴an=2n,∴bn=22n=4n,
Tn=b1+b2+…+bn=41+42+…+4n
=
=
(4n-1).
(2)Rn=a1b1+a2b2+…+anbn=2×41+4×42+…+2n×4n…①
两边同乘以4得:4Rn=2×42+4×43+…+2n×4n+1…②
①-②得:-3Rn=2×41+2×42+2×43+…+2×4n-2n×4n+1
=2×
-2n×4n+1=(
-8n)4n-
,
∴Rn=(
n-
)4n+
.
n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
∴an=2n,∴bn=22n=4n,
Tn=b1+b2+…+bn=41+42+…+4n
=
| 4(1-4n) |
| 1-4 |
| 4 |
| 3 |
(2)Rn=a1b1+a2b2+…+anbn=2×41+4×42+…+2n×4n…①
两边同乘以4得:4Rn=2×42+4×43+…+2n×4n+1…②
①-②得:-3Rn=2×41+2×42+2×43+…+2×4n-2n×4n+1
=2×
| 4(1-4n) |
| 1-4 |
| 8 |
| 3 |
| 8 |
| 3 |
∴Rn=(
| 8 |
| 3 |
| 8 |
| 9 |
| 8 |
| 9 |
点评:由数列的前n项和求数列的通项为:an=
,用错位相减法求数列的前n项和,用时要观察项的特征,是否是等差数列的项与等比数列的项的乘积.
|
练习册系列答案
相关题目