题目内容

1.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的焦点为F1、F2,点P为这个椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

分析 设P(x,y),根据椭圆方程求得两焦点坐标,根据∠F1PF2是钝角推断出PF12+PF22<F1F22,代入P坐标求得x和y的不等式关系,求得x的范围.

解答 解:设P(x,y),则F1(-2$\sqrt{3}$,0),F2(2$\sqrt{3}$,0),
∵∠F1PF2是钝角,∴cos∠F1PF2<0,
∴PF12+PF22<F1F22
∴(x+2$\sqrt{3}$)2+y2+(x-2$\sqrt{3}$)2+y2<48,
∴x2+y2<18,
∴x2+4(1-$\frac{{x}^{2}}{16}$)<18,
∴x2<$\frac{32}{3}$,解得-$\frac{4\sqrt{6}}{3}$<x<$\frac{4\sqrt{6}}{3}$.
故答案为:(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

点评 本题主要考查了椭圆的简单性质和解不等式,∠F1PF2是钝角推断出PF12+PF22<F1F22,是解题关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网