题目内容
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1,其中a>0且a≠1,
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.
(1)∵f(x)是定义在R上的奇函数,
∴f(2)+f(-2)=f(2)-f(2)=0.
(2)当x<0时,-x>0,
∴f(-x)=a-x-1,
∵f(x)是定义在R上的奇函数,
∴-f(x)=a-x-1,即f(x)=-a-x+1.
∴f(x)=
.
(3)不等式等价于
或
.
当a>1时,有
或
,注意此时loga2>0,loga5>0.
可得此时不等式的解集为(1-loga2,1+loga5).
同理可得,当0<a<1时,不等式的解集为R.
综上所述,当a>1时,不等式的解集为(1-loga2,1+loga5).
当0<a<1时,不等式的解集为(-∞,+∞).
∴f(2)+f(-2)=f(2)-f(2)=0.
(2)当x<0时,-x>0,
∴f(-x)=a-x-1,
∵f(x)是定义在R上的奇函数,
∴-f(x)=a-x-1,即f(x)=-a-x+1.
∴f(x)=
|
(3)不等式等价于
|
|
当a>1时,有
|
|
可得此时不等式的解集为(1-loga2,1+loga5).
同理可得,当0<a<1时,不等式的解集为R.
综上所述,当a>1时,不等式的解集为(1-loga2,1+loga5).
当0<a<1时,不等式的解集为(-∞,+∞).
练习册系列答案
相关题目