题目内容
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求数列{Sn}的通项公式;
(2)设Sn=
,bn=f(
)+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn<
.
(1)求数列{Sn}的通项公式;
(2)设Sn=
| 1 |
| f(n) |
| 1 |
| 2n |
| 1 |
| 2 |
分析:(1)利用数列递推式,再写一式,两式相减,可得数列{Sn}的通项公式;
(2)确定数列的通项,利用裂项法求数列的和,即可得到结论.
(2)确定数列的通项,利用裂项法求数列的和,即可得到结论.
解答:(1)解:∵an+2SnSn-1=0(n≥2),
∴Sn-Sn-1+2SnSn-1=0.---------(3分)
∴
-
=2.
又∵a1=1,---------------(5分)
∴Sn=
(n∈N+).---------------(7分)
(2)证明:∵Sn=
,∴f(n)=2n-1.--------------------------(8分)
∴bn=2(
)-1+1=(
)n-1.---------------------------------------(9分)
Tn=(
)0•(
)1+(
)1•(
)2+…+(
)n-1•(
)n=(
)1+(
)3+(
)5+…+(
)2n-1
=
[1-(
)n].-------------------------------------------------------(11分)
∴Pn=
+
+…+
---------------(13分)
=
(1-
+
-
+…+
-
)=
(1-
)-------------------------------(14分)
∴Sn-Sn-1+2SnSn-1=0.---------(3分)
∴
| 1 |
| Sn |
| 1 |
| Sn-1 |
又∵a1=1,---------------(5分)
∴Sn=
| 1 |
| 2n-1 |
(2)证明:∵Sn=
| 1 |
| f(n) |
∴bn=2(
| 1 |
| 2n |
| 1 |
| 2 |
Tn=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 2 |
| 3 |
| 1 |
| 4 |
∴Pn=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目