题目内容
已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=b1+b2+…+bn,,求Tn.
(1)求数列{an}的通项公式;
(2)设bn=
| an |
| 2n |
(1)由题意得
,解得
,∴f(x)=log3(2x-1)an=3log3(2n-1)=2n-1,n∈N*
(2)由(1)得bn=
,∴Tn=
+
+
++
+
①
Tn=
+
++
+
+
②;
①-②得
Tn=
+
+
++
+
-
=
+(
+
++
+
)-
=
-
-
,
∴Tn=3-
-
=3-
|
|
(2)由(1)得bn=
| 2n-1 |
| 2n |
| 1 |
| 21 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-5 |
| 2n-1 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 21 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n-1 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
| 1 |
| 21 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
| 2n+3 |
| 2n |
练习册系列答案
相关题目