题目内容
已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1)求证数列{bn}为等差数列,并求其通项公式;
(2)设cn=1+
| 1 | ||
|
| 1 | ||
|
| cn |
分析:(1)方法一:直接根据条件求出bn-1的表达式,再与bn-2=的表达式作差,结合递推关系式,整理即可证明数列{bn}为等差数列;即可求出求其通项公式;
方法二:先根据数列{an}的递推公式得到an+12=an+2-an+1+1;再代入bn=a12+a22+…+an+22-a1a2…an+2整理可得bn=n+3;即可说明结论.
(2)先求出cn的表达式,进而得到
=
=1+
=1+
-
;再代入求出Sn,即可得到结论.
方法二:先根据数列{an}的递推公式得到an+12=an+2-an+1+1;再代入bn=a12+a22+…+an+22-a1a2…an+2整理可得bn=n+3;即可说明结论.
(2)先求出cn的表达式,进而得到
| cn |
| (n+3)(n+4)+1 |
| (n+3)(n+4) |
| 1 |
| (n+3)(n+4) |
| 1 |
| n+3 |
| 1 |
| n+4 |
解答:解:(1)方法一 当n≥3时,因bn-2=a12+a22+…+an2-a1a2…an①,
故bn-1=a12+a22+…+an2+an+12-a1a2…anan+1②. …(2分)
②-①,得 bn-1-bn-2=an+12-a1a2…an(an+1-1)=an+12-(an+1+1)(an+1-1)=1,为常数,
所以,数列{bn}为等差数列. …(5分)
因 b1=a12+a22+a32-a1a2a3=4,故 bn=n+3. …(8分)
方法二 当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,
将上两式相除并变形,得 an+12=an+2-an+1+1.…(2分)
于是,当n∈N*时,bn=a12+a22+…+an+22-a1a2…an+2
=a12+a22+a32+(a5-a4+1)+…+(an+3-an+2+1)-a1a2…an+2
=a12+a22+a32+(an+3-a4+n-1)-(1+an+3)
=10+n-a4.
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以数列{bn}为等差数列,且bn=n+3. …(8分)
(2)因 cn=1+
+
=
,…(12分)
故
=
=1+
=1+
-
.
所以 Sn=(1+
-
)+(1+
-
)+…+(1+
-
)=n+
-
,…(15分)
即 n<Sn<n+1. …(16分)
故bn-1=a12+a22+…+an2+an+12-a1a2…anan+1②. …(2分)
②-①,得 bn-1-bn-2=an+12-a1a2…an(an+1-1)=an+12-(an+1+1)(an+1-1)=1,为常数,
所以,数列{bn}为等差数列. …(5分)
因 b1=a12+a22+a32-a1a2a3=4,故 bn=n+3. …(8分)
方法二 当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,
将上两式相除并变形,得 an+12=an+2-an+1+1.…(2分)
于是,当n∈N*时,bn=a12+a22+…+an+22-a1a2…an+2
=a12+a22+a32+(a5-a4+1)+…+(an+3-an+2+1)-a1a2…an+2
=a12+a22+a32+(an+3-a4+n-1)-(1+an+3)
=10+n-a4.
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以数列{bn}为等差数列,且bn=n+3. …(8分)
(2)因 cn=1+
| 1 |
| (n+3)2 |
| 1 |
| (n+4)2 |
| ((n+3)(n+4)+1)2 |
| (n+3)2(n+4)2 |
故
| cn |
| (n+3)(n+4)+1 |
| (n+3)(n+4) |
| 1 |
| (n+3)(n+4) |
| 1 |
| n+3 |
| 1 |
| n+4 |
所以 Sn=(1+
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
| 1 |
| 4 |
| 1 |
| n+4 |
即 n<Sn<n+1. …(16分)
点评:本题综合考查解决基本数列的基本方法(定义法,分组裂项求和等),考查运算能力.
练习册系列答案
相关题目