题目内容

设Sn为等差数列{an}的前n项和,且a1=-2010,
S2011
2011
-
S2008
2008
=3
,则S2011=______.
因为数列{an}是等差数列,设其公差为d,
Sn=
n(a1+an)
2
,得:
Sn
n
=
a1+an
2

所以,
S2011
2011
-
S2008
2008
=
a1+a2011
2
-
a1+a2008
2
=
a2011-a2008
2
=
3d
2

因为
S2011
2011
-
S2008
2008
=3
,所以
3d
2
=3
,则d=2.
又a1=-2010,
所以,S2011=2011a1+
2011×(2011-1)d
2

=2011×(-2010)+
2011×2010×2
2
=0

故答案为0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网