题目内容
3.如图1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC,BD相交于点O.(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
分析 (1)由已知得△AOB为直角三角形,由此利用勾股定理能求出AB.
(2)①由已知得△ABC与△ACD均为等边三角形,从而∠BAE=∠CAF=60°.由已知推导出△ABE≌△ACF,从而得到△AEF是等腰三角形,由∠EAF=60°,能证明△AEF是等边三角形.
②由已知推导出△ABE≌△ACF,从而CF=BE=$\frac{3}{2}$,∠EAC=∠GFC,再推导出△CAE∽△CFG,能求出CG.
解答
解:(1)∵四边形ABCD是菱形,
∴△AOB为直角三角形,且OA=$\frac{1}{2}$AC=1,OB=$\frac{1}{2}$BD=$\sqrt{3}$.
在Rt△AOB中,由勾股定理得:
AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=$\sqrt{{1}^{2}+(\sqrt{3})^{2}}$=2.
(2)①△AEF是等边三角形.
理由如下:
∵由(1)知,菱形边长为2,AC=2,∴△ABC与△ACD均为等边三角形,
∴∠BAC=∠BAE+∠CAE=60°,
又∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF.
在△ABE与△ACF中,
∵∠BAE=∠CAF,AB=AC=2,∠EBA=∠FCA=60°,∴△ABE≌△ACF(ASA),
∴AE=AF,∴△AEF是等腰三角形,
又∵∠EAF=60°,∴△AEF是等边三角形.
②BC=2,E为四等分点,且BE>CE,
∴CE=$\frac{1}{2}$,BE=$\frac{3}{2}$.
由①知△ABE≌△ACF,∴CF=BE=$\frac{3}{2}$.
∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°(三角形内角和定理),
∠AEG=∠FCG=60°(等边三角形内角),∠EGA=∠CGF(对顶角)
∴∠EAC=∠GFC.
在△CAE与△CFG中,∵∠EAC=∠GFC,∠ACE=∠FCG=60°,
∴△CAE∽△CFG,∴$\frac{CG}{CE}=\frac{CF}{AC}$,即$\frac{CG}{\frac{1}{2}}=\frac{\frac{3}{2}}{2}$,
解得:CG=$\frac{3}{8}$.
点评 本题考查三角形边长的求法,考查三角形形状的判断与证明,是中档题,解题时要认真审题,注意三角形全等、三角形相似的判定理定理和性质定理的合理运用.
| A. | 等腰直角三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等边三角形 |
| A. | k∈R | B. | k>4 | C. | k<-4 | D. | -4≤k≤4 |
| A. | $12\sqrt{3}$ | B. | $36\sqrt{3}$ | C. | $27\sqrt{3}$ | D. | 72 |
| A. | ?x0∈N,x0∈Z | B. | ?x0∈N,x0∉Z | C. | ?x0∉N,x0∈Z | D. | ?x0∉N,x0∉Z |