题目内容
(2013•茂名一模)已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列{
}为等差数列;
(3)若cn=
+bn-2n,求{cn}的前n项和.
(1)求数列{an}的通项公式;
(2)求证:数列{
| bn |
| 2n |
(3)若cn=
| an |
| an+2 |
分析:(1)把递推式an-nan-1=0变形后进行循环,可以得到an=n(n-1)(n-2)…3•2•1=n!,验证a1成立,则数列{an}的通项公式可求;
(2)把给出的递推式两边同时除以2n,移向整理即可证得数列{
}为等差数列;
(3)把数列{an}的通项代入
,把数列{bn}的通项代入bn-2n,利用裂项相消和错位相减法分别求出数列{
}和{bn-2n}的和后直接作和即可.
(2)把给出的递推式两边同时除以2n,移向整理即可证得数列{
| bn |
| 2n |
(3)把数列{an}的通项代入
| an |
| an+2 |
| an |
| an+2 |
解答:(1)解:∵an-nan-1=0(n≥2),a1=1,
∴an=nan-1=n(n-1)an-2=n(n-1)(n-2)an-3=…
=n(n-1)(n-2)…3•2•1=n!
又a1=1=1!,∴an=n!
(2)证明:由bn=2bn-1-2n-1,两边同时除以2n得:
=
-
,即
-
=
.
∴数列{
}是以
为首项,公差为-
的等差数列,
则
=
+(n-1)(-
)=1-
,故bn=2n(1-
).
(3)解:因为
=
=
=
-
,
bn-2n=2n(1-
)-2n=-n•2n-1.
记An=
+
+
+…+
=(
-
)+(
-
)+(
-
)+…+(
-
)
=
-
.
记{bn-2n}的前n项和为Bn.
则Bn=-1•20-2•21-3•22-…-n•2n-1 ①
∴2Bn=-1•21-2•22-…-(n-1)•2n-1-n•2n ②
由②-①得:
Bn=20+21+22+…+2n-1-n•2n=
-n•2n=(1-n)•2n-1.
∴Sn=c1+c2+c3+…+cn=An+Bn=(1-n)•2n-
-
.
所以数列{cn}的前n项和为(1-n)•2n-
-
.
∴an=nan-1=n(n-1)an-2=n(n-1)(n-2)an-3=…
=n(n-1)(n-2)…3•2•1=n!
又a1=1=1!,∴an=n!
(2)证明:由bn=2bn-1-2n-1,两边同时除以2n得:
| bn |
| 2n |
| bn-1 |
| 2n-1 |
| 1 |
| 2 |
| bn |
| 2n |
| bn-1 |
| 2n-1 |
| 1 |
| 2 |
∴数列{
| bn |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
则
| bn |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
| n |
| 2 |
(3)解:因为
| an |
| an+2 |
| n! |
| (n+2)! |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
bn-2n=2n(1-
| n |
| 2 |
记An=
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| a5 |
| an |
| an+2 |
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
记{bn-2n}的前n项和为Bn.
则Bn=-1•20-2•21-3•22-…-n•2n-1 ①
∴2Bn=-1•21-2•22-…-(n-1)•2n-1-n•2n ②
由②-①得:
Bn=20+21+22+…+2n-1-n•2n=
| 1-2n |
| 1-2 |
∴Sn=c1+c2+c3+…+cn=An+Bn=(1-n)•2n-
| 1 |
| 2 |
| 1 |
| n+2 |
所以数列{cn}的前n项和为(1-n)•2n-
| 1 |
| 2 |
| 1 |
| n+2 |
点评:本题考查了等差关系的确定,考查了等差数列和等比数列通项公式的求法,考查了利用裂项相消和错位相减法求数列的前n项和,是中档题.
练习册系列答案
相关题目