题目内容
已知函数f(x)=|x-a|-alnx,a∈R
(1)求函数f(x)的单调区间;
(2)若函数f(x)的最小值为m,且-2a≤m≤-a,求a的取值范围.
(1)求函数f(x)的单调区间;
(2)若函数f(x)的最小值为m,且-2a≤m≤-a,求a的取值范围.
(1)依题意有,函数的定义域为(0,+∞),
当a≤0时,f(x)=|x-a|-alnx=x-a-alnx
∵f′(x)=1-
>0,∴函数f(x)的单调增区间为(0,+∞),
当a>0时,f(x)=|x-a|-alnx=
若x≥a,f′(x)=1-
=
>0,此时函数单调递增,
若x<a,f′(x)=-1-
<0,此时函数单调递减,
综上,当a≤0时,函数f(x)的单调增区间为(0,+∞),
当a>0时,函数f(x)的单调减区间为(0,a),单调减区间为(a,+∞)
(2)由(1)知,当a≤0时,函数f(x)单调递增,没有最小值,不合题意;
则必有a>0,此时函数f(x)的单调减区间为(0,a),单调减区间为(a,+∞),
所以函数f(x)的最小值为m=f(a)=-alna
由题意,-2a≤-alna≤-a,即1≤lna≤2
解得 e≤a≤e2
当a≤0时,f(x)=|x-a|-alnx=x-a-alnx
∵f′(x)=1-
| a |
| x |
当a>0时,f(x)=|x-a|-alnx=
|
若x≥a,f′(x)=1-
| a |
| x |
| x-a |
| x |
若x<a,f′(x)=-1-
| a |
| x |
综上,当a≤0时,函数f(x)的单调增区间为(0,+∞),
当a>0时,函数f(x)的单调减区间为(0,a),单调减区间为(a,+∞)
(2)由(1)知,当a≤0时,函数f(x)单调递增,没有最小值,不合题意;
则必有a>0,此时函数f(x)的单调减区间为(0,a),单调减区间为(a,+∞),
所以函数f(x)的最小值为m=f(a)=-alna
由题意,-2a≤-alna≤-a,即1≤lna≤2
解得 e≤a≤e2
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|