题目内容
已知函数f(x)=sin(x+
)+sin(x-
)+cosx+a的最大值为1.
(1)求常数a的值;
(2)求使f(x)≥0成立的x的取值集合.
| π |
| 6 |
| π |
| 6 |
(1)求常数a的值;
(2)求使f(x)≥0成立的x的取值集合.
f(x)=sin(x+
)+sin(x-
)+cosx+a
=
sinx+cosx+a
=2sin(x+
)+a
(1)f(x)的最大值为1∴1=2+a∴a=-1
(2)f(x)=2sin(x+
)-1≥0,∴sin(x+
)≥
∴2kπ+
≤x+
≤2kπ+
(k∈Z)
∴x∈{x|2kπ≤x≤2kπ+
π;k∈Z}
| π |
| 6 |
| π |
| 6 |
=
| 3 |
=2sin(x+
| π |
| 6 |
(1)f(x)的最大值为1∴1=2+a∴a=-1
(2)f(x)=2sin(x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
∴2kπ+
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴x∈{x|2kπ≤x≤2kπ+
| 2 |
| 3 |
练习册系列答案
相关题目