题目内容
已知数列{an}满足an=3an-1+3n-1(n∈N*,n≥2),且a1=5,若bn=
(an+t)(n∈N*)且{bn}的等差数列,则t=
| 1 | ||
|
-
| 1 |
| 2 |
-
.| 1 |
| 2 |
分析:利用数列递推式求出bn-bn-1,保证相邻两项的差为常数,令1+2t=0,解方程求出t的值即可.
解答:解:当n≥2 时,bn-bn-1=
(an+t)-
(an-1+t)
∵an=3an-1+3n-1
∴bn-bn-1=1-
要使{bn} 为等差数列,则必需使1+2t=0,∴t=-
故答案为:-
| 1 |
| 3n |
| 1 |
| 3n-1 |
∵an=3an-1+3n-1
∴bn-bn-1=1-
| 1+2t |
| 3n |
要使{bn} 为等差数列,则必需使1+2t=0,∴t=-
| 1 |
| 2 |
故答案为:-
| 1 |
| 2 |
点评:本题考查数列递推式,考查等差数列,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目